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Experiments [1, 2] show that in a shock tube in which
the driven gas is a gas mixture reacting with heat re-
lease, after rupture of the diaphragm a compression
shock forms near the contact surface and propagates
through the reacting mixture, which is compressed in
the shock wave.

We will examine the beginning of the decay process
of an arbitrary discontinuity, when the driven gas is
a chemically reacting mixture, and the driver gas is
an inert gas. As in the problem of the effect of relax-
ation oscillation on the decay of an arbitrary discon~
tinuity [3], we will use the series expansion method.
The analysis is developed for the slow reaction

A, + B, - 2AB 1)

without taking oscillation relaxation into account.

If this reaction involves heat release, then com-
pression waves will propagate in both directions from
the contact surface, the shock wave formed upon rup-
ture of the diaphragm will be decelerated, while, in
the further process, fusion of the compresion waves
leads to the appearance of a compresion shock.

If the reaction involves heat absorption, then
rarefaction waves will propagate in both directions
from the contact surface, the latter will be accele-
rated, and the shock wave will be decelerated, This
analysis is extended to cover the case of a shock wave
reflected from the end face of the tube in a reacting
mixture.

Let the diaphragm exhibit, at the initial moment of
time, a discontinuity of the constant parameters
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The low-pressure chamber (x = 0) is filled with
a stoichiometric mixture of two gases—A, and B,
The formation of the AB component that begins after
the passage of a shock wave through the mixture, will
be treated in accordance with the Arhenius law {4]
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Excitation of oscillatory degrees of freedom of the
diatomic gas molecules of A,, By, and AB will be ne-
glected. Then, for the specific enthalpies we have
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In the expressions (2) through (4) use is made of the
following notation: € is temperature, P pressure, V
velocity, u molecular weight, Cp and cy, are specific
heats, x is the distance from the diaphragm t time,

n the number of molecules per unit volume, A a con-
stant, E the activation energy, R the gas constant,
and Q, the thermal effect of the reaction @y > 0 for
Cly + Hy 2HCI and Q, < 0 for, say, Ny + Oy — 2NO).

We note that, regardless of the quantity of newly
formed component AB, the molecular weight of the
mixture will be constant:

H1=1/2 [P« (A,) +}L(B2)] . (5)

If viscosity and heat conductivity arenot considered,
the one~-dimensional steady flow resulting from the
discontinuity of the initial parameters (2) is described
on each side of the contact surface by the equations
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where, with allowance for (¢) and (5),
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(p is density and C the mass of AB).
For the driven gas, in addition to (6), from (3) we
have
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(N is the Avogadro's number).

Let us pass to the independent variables t and ¥

and introduce the dimensionless parameters
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where x,(t) is a coordinate of the contact surface and
P, and ¢, are certain constants to be determined.
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Then, taking (7) and (9) into account, the expres-
sions (6) and (8) will take the form

T ap T du du ap
P T TP =0 T T

e e

Linearizing near these constants, and expressing
the solution in the form

(n=0,1,2,..)
(11)

T=1+J"T, (1),  p=1+31"p,(2)

u=u°+2r"uﬂ(z), C=Z1:"Cn(z), z=t/t,

from (10) we obtain n systems of ordinary differential
equations for determining Tys Pps u, and C,:

Rty zu,) -4 =0, Y7 (np, — 2py) +ug =101y
Ty — (n/2)Tp=")1(py —n /2Py — Qfn/2),

Cn"—(’f/z)cn‘—‘—fn/z (fo=0, f1=1,

fp=(E/RO—2)T,  —2p,_, —2C, , for n>2), (12)

From (12) for n = 0, we obtain

Po = const, u, = const, C,= const=0, T,=const. (13)

From (12) and (13) it can be seen that for n = 0 the
flow parameters in the reacting mixture are "frozen."
Assuming in (13) that Ty = p, = uy = C; = 0, we will
take for the constants 6, Py, V,=u’(Ry 6’0)1/2 the
corresponding parameters behind a shock wave pro-
pagating at a constant velocity V,°, associated with
the decay of an arbitrary discontinuity [5] calculated
for initial conditions (2) without considering the chem-
ical reaction. Here, the temperature of the driver
gas at the contact surface will be denoted by 0.

Then, the boundary conditions for (12) at the con-

tact surface will be
at z=0, (14)

Uy = — Gp"

and at the shock wave

u,=Dp,, T =Fp, C,=0 at :=U, 15)
where
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Eliminating Py and L respectively, inthe first two
equations of (12) we obtain
(1 —=5%5z%u,” + 5.2 (n — 1) su, — 53 (n— 1) u, =:Qf',
(4~ pp" + 82 (n — 1) 2p —Shn(n — 1) p, =

= Qsf  —(n—Dty . (16)
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We will obtain a solution for n = 1. From (16) it fol-
lows that

u=a;(— V&z)+ b (14 V),
n=Aail— Vi) +Bi(t+ Vi, a7

We will determine the arbitrary constants a, by,
Ay, and By by making use of (14), the first condition
in (15), and the first two equations in (12):

Ay,

U Vin—6Q AR
A1="7—

V¥ (12U 4 D+G+GDU)’ T VYii—6

a1 = V%Ax—’h V’/—SQy br=— Vs/_731+1/’ V7/§Q ) (18)

Substituting (18) and (17), we get

n=L,Q01 + G2, up = L1Q[— G+ (/7L — )z} s
L, =*%U (8/;U +D + G+ GDU)™? , (19)

Now, from the third and fourth equations of (12)
we obtain, respectively,

T, =3,00 +L +dz), C=1+d%, (20)

The constants d; and d;° can be determined from
the second and third condition of (15), namely

dy ="YsUA /Ly + GULy —3y), d°=—UT. (21)

A sdlution forn=2, 3, ..., is readily obtained in
same manner. '

Since U, G, D, F are positive values, it is readily
seen from (19) through (21) that for Q > 0 the velocity

of the shock wave increases:
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Ve =Vy + 118, 8 = V1R I BiMy ¢

The pattern is reversed for Q < 0. Let us now
examine the characteristics of the system of equa-~
tions (10} that originate at the contact surface

d _ _ .
% = Vi, #z YV (1 4 tp— -%- tTl) . 23)

Integrating (23) with allowance for (19) through
(21), we obtain

t=VTha+ mQr)[(r—n) + Q‘—’-‘—Tﬁﬂ(ﬂ—ro’)] v (24)

(1= Vs (LG —ady), aa=3s V7 (1 —6L1), a1>0, az>0),

the equation for the characteristic originating at the
point ¢ =0, 7= 7.

Let us find the point of intersection of this cha-
racteristic with the characteritisc that originates
in =0, 7= 1y + ATy, and then assume that A7,
tends to zero. We see then that for Q > 0 the cha-
racteristics (23) intersect starting with

T~ (Q M + ol

Hence, for @ > 0, compression waves propagate
from the contact surface, while from Q < 0 the
waves are rarefaction waves. The relations derived
are also applicable to the analysis of flows of a
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reacting gas mixture behind a reflected shock, if the
reaction in the mixture sets in after the shock wave
has passed through it.

For this purpose, it is necessary to take for the-
constants Py, §, V, the corresponding values of the
parameters behind the reflected shock, computed
without considering the chemical reaction, and also
to take G = 0 everywhere starting with (14) and to take
in (15) the velocity of the reflected wave for V¢ and
the velocity of the gas behind the incident shock wave
for V,.

The above discussion shows that it is possible to
obtain a second compression shock upon ignition of
gas mixtures by shock waves, and to calculate the
subsequent flow within the limits of one-dimensional
steady gas motion, taking into account the nonunifor-
mities of the physicochemical processes.
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